Защита резервуаров от статического электричества. Электризация нефтепродуктов. Причины возникновения и меры для защиты от статического электричества Рекомендации по предотвращению электризации нефтепродуктов

Под статическим электричеством понимаются электрические заряды, находящиеся в состоянии относительного покоя, распределенные на поверхности или в объеме диэлектрика или на поверхности изолированного проводника.

Контактная разность потенциалов различна и зависит от диэлектрических свойств соприкасающихся материалов, их физического состояния, величины давления, с которым поверхности прижаты друг к другу, скорости перемещения, от влажности и температуры окружающей среды и др.

Электризация твердых тел возможна при движении ременных передач и конвейерных лент.

Как показывают проведенные исследования, интенсивная электризация наблюдается при соударении частиц о поверхности трубопроводов в процессе пневмотранспортировки пылевидных материалов, деформации, дроблении (разбрызгивании) веществ, относительном перемещении двух находящихся в контакте тел, слоев жидкости или сыпучих материалов, при интенсивном перемещении, перемешивании, кристаллизации и испарении веществ.

Кроме того, возможна электризация жидкостей, имеющих низкую электропроводность, в том числе при наливе, сливе и перекачке толуола, бензина и других нефтепродуктов из незаземленных резервуаров, цистерн, бочек; при перевозке жидкостей в незаземленных емкостях; при их фильтровании через пористые перегородки и сетки и т.п. Опасность статического электричества обусловлена главным образом возможностью искрового разряда, что может привести к взрыву, пожару и, следовательно, поражению людей.

Разряд статического электричества возникает тогда, когда напряженность электростатического поля достигает пробивной (критической) величины. Для воздуха пробивное напряжение составляет примерно 30 кВ/см.

Физиологическое действие статического электричества на организм человека зависит от величины, освобождающейся при разряде электрической энергии. Человек может испытать слабые, умеренные или сильные уколы или удары. Уколы и толчки не опасны для жизни, так как сила тока ничтожно мала. Однако возможны рефлекторные движения, приводящие к падению с высоты, соприкосновению с не огороженными вращающимися частями машин и т.п.

На железнодорожном транспорте из всего многообразия технологических процессов, приводящих к появлению статического электричества, основными являются транспортировка различных жидкостей в цистернах, перекачка нефтепродуктов на сливно-наливных эстакадах.

Рассмотрим процесс электризации жидкости. Механизм электризации жидкости, движущейся по трубе, объясняется механическим разрушением двойного электрического слоя, возникающего на границе с твердой фазой. Поскольку любая диэлектрическая жидкость всегда содержит в себе определенное количество носителей электрического заряда, на границе раздела жидкой и твердой фаз происходит образование двойного электрического слоя.

При этом заряды одного знака, оседающие на поверхности твердой стенки, нейтрализуются, а заряды противоположного знака, находящиеся в объеме жидкости, увлекаются потоком и попадают в приемный резервуар. Если в резервуаре над поверхностью жидкости имеется легковоспламеняющаяся паровоздушная смесь, то не исключена возможность взрыва и пожара вследствие разряда статического электричества между поверхностью наэлектризованной жидкости и стенками резервуара или другими заземленными элементами конструкции.

Образование зарядов статического электричества происходит также при заполнении резервуаров свободно падающей струей, с разбрызгиванием.

При этом мелкие и крупные капли приобретают заряды противоположных знаков. Образуется облако мелких капель, создающее над поверхностью жидкости электрическое поле с высоким градиентом. В результате этих явлений происходят электростатические разряды.

Основные факторы, определяющие интенсивность электризации нефтепродуктов, чистота нефтепродуктов и их электрическое сопротивление; скорость и характер движения (непрерывной струей или разбрызгиванием); материал металла трубопроводов, резервуаров и других приспособлений, по которым движутся нефтепродукты, а также состояние их внутренней поверхности. Особенно интенсивно электризуются нефтепродукты при их фильтрации.

Установлено, что бензин, протекая по трубам, заряжается отрицательно, а трубопровод положительно.

Величина полного заряда, передаваемого наэлектризованным продуктом приемному резервуару:

где: -- заряд продукта, к/л;

Количество перекаченного продукта, л.

Данные о минимальной энергии воспламенения паро и газовоздушных смесей (при давлении 0,1 МПа и температуре 200С) приведены в таблице 11.1

Таблица 11.1

Для предупреждения возможности возникновения опасных искровых разрядов с поверхности оборудования, перерабатываемых веществ, а также с тела человека предусматриваются (с учетом особенностей производства) следующие мероприятия, обеспечивающие стекание возникших зарядов статического электричества:

Отвод зарядов с помощью уменьшения удельных объемных и поверхностных электрических сопротивлений;

Нейтрализация зарядов с помощью использования индукционных нейтрализаторов и др.;

Отвод зарядов с помощью устройства заземления оборудования и коммуникаций.

Среди мероприятий по защите от статического электричества наиболее широкое применение для отвода электростатических зарядов получило заземление, которое применяется совместно с вышерассмотренными мерами. Заземлению подлежат наливные стояки эстакад для заполнения цистерн и рельсы в пределах фронта сливно-наливных операций. Заземляющие устройства для защиты от статического электричества объединяют с защитными или грозозащитными заземляющими устройствами. При этом предельно допустимое сопротивление заземляющего устройства, предназначенного исключительно для отвода статического электричества, должно быть не больше 100 Ом. Неметаллическое оборудование будет являться электрически заземленным, если сопротивление любой его точки относительно контура заземления не превышает 107 Ом.

При малой емкости С сопротивление растеканию тока заземляющего устройства может быть выше 107 Ом.

Рассмотрим, в каком случае будет обеспечена безопасность от возможных разрядов статического электричества при наливе в изолированную цистерну вместимостью М = 1000 л. бензина со скоростью v = 100 л/мин. Скорость электризации бензина = 1,1·10-8 А·с/л.

Определим потенциал на цистерне к концу налива. Общий заряд, передаваемый электризованным бензином цистерне, составит.

Согласно действующим правилам защиты от разрядов статического электричества должна осуществляться во взрывоопасных и пожароопасных производствах при наличие зон классов В-I, B-Ia, B-II, B-IIa, П-I и П-II, в которых применяются и вырабатываются вещества с удельным объёмным электрическим сопротивлением Ом∙м.

В остальных случаях защита осуществляется лишь тогда, когда статическое электричество предоставляет опасность для обслуживающего персонала, отрицательно влияет на технологический процесс или качество продукции.

Основными способами устранения опасности от статического электричества является (слайд):

1) заземление оборудования, коммуникаций, аппаратов и сосудов, а так же обеспечение постоянного электрического контакта с заземлением тела человека;

2) уменьшение удельного объемного и поверхностного электрического сопротивления путем повышения влажности воздуха или применения антистатических примесей;

3) ионизацией воздуха или среды, в частности, в нутрии аппарата, сосуда и т.д.

Кроме этих способов используют: предотвращение образования взрывоопасных концентрации, ограничение скорости движения жидкости, замену ЛВЖ на негорючие растворители и т.д. Практический способ устранения опасности от статического электричества выбирается с учётом эффективности и экономической целесообразности.

Остановимся более подробно на указанных выше способах устранения опасности от статического электричества.

Заземление (18 мин) – наиболее часто применяемая мера защиты от статического электричества. Его целью является устранение опасности возникновения электрических разрядов с проводящих частей оборудования. Поэтому все проводящие части оборудования, и электропроводные неметаллические предметы подлежат обязательному заземлению, независимо от того, применяются ли другие способы защиты от статического электричества. Заземлять следует не только те части оборудования, которые участвуют в генерировании статического электричества, но и все другие указанного выше свойства, так как они могут зарядиться по закону электростатической индукции.

В случаях, когда оборудование выполнено из электропроводящих материалов, заземление является основным и почти всегда достаточным способом защиты.

Если же на внешней поверхности или внутренних стенках металлических аппаратов, резервуаров и трубопроводов образуются отложения непроводящих веществ (смолы, пленки, осадки), заземление становится неэффективным. Заземление не устраняет опасности и при использовании аппаратов с эмалированными и другими неэлектропроводящими покрытиями.

Неметаллическое оборудование считается электростатически заземленным, если сопротивление растеканию тока на землю с любых точек его внешней и внутренней поверхности Ом при относительной влажности. Такое сопротивление обеспечивает необходимое значение постоянной времени релаксации в пределах десятой доли секунды в невзрывоопасной и тысячные доли секунды во взрывоопасной среде. Постоянная времени релаксациисвязана с сопротивлениемR заземления аппарата или оборудования и его емкостью C соотношением τ = R C .

Трубопроводы наружных установок (на эстакадах или в каналах), оборудование и трубопроводы, расположенные в цехах, должны представлять на всем протяжении электрическую цепь и присоединяться к заземляющим устройствам. Считается, что электрическая проводимость фланцевых соединений трубопроводов и аппаратов, соединений крышек с корпусами аппаратов и т.п. достаточно высока, поэтому не требуется устанавливать специальных параллельных перемычек.

Каждая система аппаратов и трубопроводов в пределах цеха должна быть заземлена не менее, чем в двух местах. Все резервуары и емкости вместимостью более 50 м 3 и диаметром более 2,5 м заземляют не менее чем в двух противоположенных точках. На поверхности горючих жидкостей в резервуарах не должно быть плавающих предметов.

Наливные стояки эстакад для заполнения железнодорожных цистерн и рельсы железнодорожных путей в пределах сливоналивного фронта должны быть электрически соединены между собой и надежно заземлены. Автоцистерны, наливные суда, самолеты, находящиеся под наливом (сливом) горючих жидкостей и сжиженных газов, должны также заземляться. Контактные устройства (без средств взрывозащиты) для присоединения заземляющих проводников должны быть установлены за пределами взрывоопасной зоны (не менее 5м от места налива или слива, ПУЭ). При этом проводники вначале присоединяются к корпусу объекта заземления, а затем к заземляющему устройству.

Следует отметить, что применяемые до сих пор для заземления автоцистерн заземляющие проводники не обеспечивают требуемого уровня пожаровзрывобезопасности технологии налива или слива топлива и других ЛВЖ. Поэтому в настоящее время разработаны и серийно выпускаются специальные устройства заземления автоцистерн (УЗА) типов УЗА-2МИ, УЗА-2МК и УЗА-2МК-03, которые соответствуют требованиям ГОСТов и могут устанавливаться во взрывоопасных зонах класса В-Iг.

Если для защиты от статической электризации проводящего неметаллического оборудования с проводящей футеровкой применяется заземление, то к нему применяются те же требования, что и к заземлению металлического оборудования. Например, заземление трубопровода из диэлектрического материала, но с проводящим покрытием (краска, лак), может выполняться присоединением его к заземляющему контуру с помощью металлических хомутов и проводников через 20÷30 м.

Но заземление не решает задачу защиты от статического электричества резервуара, заполняемого наэлектризованной жидкостью, лишь исключает накопление заряда (натекающего из объема жидкости) на его стенках, но не ускоряет процесс рассеяния заряда в жидкости. Это объясняется тем, что скорость релаксации зарядов статического электричества в объеме диэлектрической жидкости нефтепродуктов определяется постоянной времени релаксации . Следовательно, в заполняемом наэлектризованными продуктами резервуаре в течении всего времени закачки жидкости и в течении времени, приблизительно равном, после ее окончания существует электрическое поле зарядов независимо от того, заполняется этот резервуар или нет. Именно в этот промежуток времени может существовать опасность воспламенения паровоздушной смеси нефтепродуктов в резервуаре разрядами статического электричества.

С учетом сказанного выше, значительную опасность представляет забор проб из резервуара сразу после его заполнения. Но через промежуток времени, примерно равный , после окончания заполнения заземленного резервуара заряды статического электричества в нем практически исчезают и проведение забора проб жидкости становится безопасным.

Для светлых нефтепродуктов, имеющих малую электропроводность (при Ом∙м), необходимое время выдержки после заполнения резервуара, обеспечивающее безопасность дальнейших операций, должно быть не менее 10 минут.

Заземление резервуара и выдержка необходимого времени после заполнения не дадут нужного эффекта безопасности, если в резервуаре имеются плавающие на поверхности жидкости изолированные предметы, которые могут приобрести заряд статического электричества при заполнении резервуара и сохранить его в течении времени, значительно превышающем . В этом случае при контакте плавающего предмета с заземленным проводящим телом может произойти опасное искрообразование.

Уменьшение объемного и поверхностного удельных электрических сопротивлений (8 мин).

При этом увеличивается электропроводность и обеспечивается способность диэлектрика отводить заряды статического электричества. Устранение опасности статической электризации диэлектриков этим способом является весьма эффективным и может быть достигнуто повышением влажности воздуха, химической обработкой поверхности, применением электропроводных покрытий и антистатических веществ (присадок).

А. Повышение относительной влажности воздуха.

Большинство пожаров от искр статического электричества происходит обычно зимой, когда относительная влажность воздуха велика. При относительной влажности 65÷70%, как показывают исследования и практика, число вспышек и загораний становится незначительным.

Ускорение стекания электростатических зарядов с диэлектриков при высокой влажности объясняют тем, что на поверхности гидрофильных диэлектриков адсорбируется тонкая пленка влаги, содержащая обычно большое количество ионов из загрязнений и растворенного вещества, за счет которых обеспечивается достаточная поверхностная электропроводность электролитического характера.

Однако, если материал находится при более высокой температуре, чем та, при которой пленка может удерживаться на поверхности, указанная поверхность не может стать проводящей даже при очень высокой влажности воздуха. Эффект также не будет достигнут, если заряженная поверхность диэлектрика гидрофобна (несмачиваемая: сера, парафин, масла и другие углеводороды) или скорость ее перемещения больше, чем скорость образования поверхностной пленки.

Увеличение влажности достигается распылением водяного пара или воды, циркуляцией влажного воздуха, а иногда свободным испарением с поверхности воды или охлаждением электризующей поверхности на 10 о С ниже температуры окружающей среды.

Б.Химическая обработка поверхности, электропроводные покрытия.

Уменьшение удельного поверхностного сопротивления полимерных материалов может быть достигнуто химической обработкой их поверхности кислотами (например серной или хлорсульфоновой). В результате этого поверхности полимера (полистирол, полиэтилен и полиэфирные пленки) окисляются или сульфируются и удельное сопротивление уменьшается до 10 6 Ом при относительной влажности воздуха 75%.

Положительный эффект достигается и при обработке изделий из полистирола и полиолефинов погружением образцов в петролейный эфир при одновременном воздействии ультразвуком. Методы химической обработки эффективны, но требуют точного соблюдения технологических условий.

Иногда нужный эффект достигается нанесением на диэлектрик поверхостной проводящей пленки, например, тонкой металлической, получаемый распылением, разбрызгиванием, испарением в вакууме или наклеиванием металлической фольги. Пленки на углеродной основе получают распылением углерода в жидкой среде или порошка с частицами меньше 1 мкм.

В. Применение антистатических веществ.

Большинство горючих и легковоспламеняющихся жидкостей характеризуются высоким удельным электрическим сопротивлением. Поэтому при некоторых операциях, например с нефтепродуктами, происходит накопление зарядов статического электричества, которое препятствует интенсификации технологических операций, а также служит источником взрывов и пожаров на нефтеперерабатывающих и нефтехимических предприятиях.

Движение жидких углеводородов относительно твердой, жидкой или газообразной среды может привести к разделению электрических зарядов на поверхности соприкосновения. При движение жидкости по трубе слой зарядов находящихся на поверхности жидкости, уносится её потоком, а заряды противоположного знака остаются на контактирующей с жидкостью поверхностью трубы и если, металлическая труба заземлена, стекают в землю. Если же металлический трубопровод изолирован или изготовлен из диэлектрических материалов, то он приобретает положительный заряд, а жидкость - отрицательный.

Степень электризации нефтепродуктов зависит от состава и концентрации содержащихся в них активных примесей, физико-химического состава нефтепродуктов, состояние внутренней поверхности трубопровода или технологического аппарата (наличия коррозии, шероховатости и т.д.), диэлектрических свойств, вязкости и плотности жидкости, а также скорости движения жидкости, диаметра и длины трубопровода. Например, присутствие 0,001% механических примесей превращает инертное углеводородное топливо в электризуемое до опасных пределов.

Один из наиболее эффективных способов устранения электризации нефтепродуктов,- введение специальных антистатических веществ. Добавление их в тысячных или десятитысячных долях процента позволяет уменьшить удельное сопротивление нефтепродуктов на несколько порядков и обезопасить операции с ними. К таким антистатическим веществам относятся: олеаты и нафтенаты хрома и кобальта, соли хрома на основе синтетических жирных кислот, присадка «Сигбаль» и другие. Так, присадка на основе олеиновой кислоты олеат хрома уменьшает ρ v бензина Б-70 в 1,2 ∙ 10 4 раза. Широкое применение в операциях по промывке деталей нашли присадки «Анкор -1» и АСП-1.

Для получения «безопасной» электропроводности нефтепродуктов в любых условиях надо вводить 0,001÷0,005% присадок. На физико-химические свойства нефтепродуктов они обычно не влияют.

Для получения проводящих растворов полимеров (клеев) также применяют антистатические присадки, растворимые в них, например соли металлов переменной валентности высших карбоновых и синтетических кислот.

Положительные результаты достигаются при использовании антистатических веществ на предприятиях по переработке синтетических волокон, поскольку они обладают способностью увеличивать их ионную проводимость и тем самым снижать электрическое сопротивление волокон и получаемых из них материалов.

Для приготовления антистатических веществ, которые влияют на электрические свойства волокон применяют: углеводороды парафинового ряда, жиры, масла, гигроскопические вещества, поверхностно-активные вещества

Антистатические вещества используются в промышленности полимеров, например, при обработке полистирола и полиметилметакрилата. Обработка полимеров антистатическими добавками производится как поверхностным нанесением, так и введением в расплавленную массу. В качестве таких добавок применяют например ПАВ. При поверхностном нанесении ПАВ ρ s полимеров снижается на 5÷8 порядков, но срок эффективного действия мал

(до одного месяца). Введение ПАВ внутрь более перспективно т.к. антистатические свойства полимеров сохраняются несколько лет, полимеры становятся менее подверженными действию растворителей, истиранию и т.д. Для каждого диэлектрика оптимальные концентрации ПАВ различны и варьируются от 0,05 до 3,0%.

В настоящее время широко используются трубы, выполненные из полупроводящих полимерных композиций с наполнителями: ацетиленовой сажей, алюминиевой пудрой. графитом, цинковой пылью. Лучший наполнитель – ацетиленовая сажа, снижающая сопротивление на 10÷11 порядков даже при 20% от массы полимера. Её оптимальная массовая концентрация для создания электропроводящего полимера составляет 25%.

Для получения электропроводной или антистатической резины в неё вводят наполнители: порошковый графит, различные сажи, мелкодисперсные металлы. Удельное сопротивление ρ v такой резины достигает 5 ∙10 2 Ом∙м, а обычной до 10 6 Ом∙м.

Антистатическими резинами марки КР-388, КР-245 пользуются во взрывоопасных производствах, покрывают полы, рабочие столы, детали оборудования и колеса внутрицехового транспорта. Такое покрытие быстрее отводит возникающие заряды, снижает электризацию людей до безопасного уровня.

В последнее время разработана маслобензостойкая электропроводящая резина с использованием бутадиеннитральных и полихлоропреновых каучуков, которая широко используется для изготовления напорных рукавов и шлангов для перекачки ЛВЖ. Такие рукава значительно снижают опасность воспламенения при сливе и наливе ЛВЖ в авто- и железнодорожные цистерны и другие емкости, исключают применение специальных устройств для заземления заправочных воронок и наконечников.

Эффективное снижение потенциала ременных передач и ленточных транспортеров, изготовленных из материалов с ρ s =10 5 Ом∙м, достигается увеличением поверхностной проводимости ремня и обязательным заземлением установки. Для увеличения поверхностной проводимости ремня его внутренняя поверхность покрывается антистатической смазкой, возобновляемой не реже одного раза в неделю.

Ионизация воздуха (9 мин).

Сущность этого способа состоит в нейтрализации или компенсации поверхностных электрических зарядов ионами разного знака, которые создаются специальными приборами - нейтрализаторами. Ионы, имеющие полярность, противоположную полярности зарядов наэлектризованных материалов, под действием электрического поля, создаваемое зарядами таких материалов, оседают на их поверхностях и нейтрализуют заряды.

Ионизация воздуха электрическим полем высокой напряженности осуществляется с помощью нейтрализаторов двух типов: индукционных и высоковольтных.

Индукционные нейтрализаторы бывают с остриями (рис.2,а) и проволочными (рис. 2,б) У нейтрализатора с остриями в деревянном или металлическом стержне укреплены заземленные острия, тонкие проволочки или фольга. У проволочного нейтрализатора применена тонкая стальная проволочка, натянутая поперек движущегося заряженного материала. Работают они следующим образом. Под действием сильного электрического поля наэлектризованного тела вблизи острия или проволоки происходит ударная ионизация, в результате которой образуются ионы обоих знаков. Для повышения эффективности действия нейтрализаторов стремятся к сокращению расстояния между кончиками игл или проволокой и нейтрализуемой поверхностью до 5÷20 мм. Такие нейтрализаторы обладают высокой ионизационной способностью, особенно нейтрализаторы с остриями.

Рис. 2. Схема индукционного нейтрализатора (слайд):

а- с остриями; б- проволочного; 1- острия; 1"- проволока; 2- заряженная поверхность.

Недостатками их являются то, что они действуют, если потенциал наэлектризованного тела достигает несколько кВ.

Их достоинства: простота конструкции, низкая стоимость, малые эксплуатационные затраты, не требуют источника питания.

Высоковольтные нейтрализаторы (рис.3) работают на переменном, постоянном и токе высокой частоты. Они состоят из трансформатора с высоким выходным напряжением и игольчатого разрядника. В нейтрализатор на постоянном токе входит и высоковольтный выпрямитель. Принцип действия их основан на ионизации воздуха высоким напряжением. Максимальное расстояние между разрядным электродом и нейтрализуемым материалом, при нейтрализатор ещё эффективен, у таких нейтрализаторов может достигать 600 мм, но обычно рабочее расстояние принимается равным 200÷300 мм. Достоинство высоковольтных нейтрализаторов- достаточное ионизирующее действие и при низком потенциале наэлектризованного диэлектрического материала. Недостатком их является большая энергия возникающих искр, способных воспламенять любые взрывоопасные смеси, поэтому для взрывоопасных зон они могут применяться только во взрывозащищенном исполнении.

Рис.3 Схема высоковольтного нейтрализатора (слайд).

Для защиты обслуживающего персонала от высокого напряжения в высоковольтную цепь их включаются защитные сопротивления, которые ограничивают ток до величины в 50÷100 раз меньше тока, опасного для жизни.

Радиоизотопные нейтрализаторы очень просты по устройству, не требуют источника питания. достаточно эффективны и безопасны при использовании во взрывоопасных средах. Они широко применяются в различных отраслях промышленности. При использовании таких нейтрализаторов необходимо предусматривать надежную защиту людей, оборудования и выпускаемой продукции от вредного воздействия радиоактивного излучения.

Радиоизотопные нейтрализаторы чаще всего имеют вид длинных пластинок или маленьких дисков. Одна сторона содержит радиоактивное вещество, создающее радиоактивное излучение, ионизирующее воздух. Чтобы не загрязнять воздух, продукцию и оборудование, радиоактивное вещество покрывают тонким защитным слоем и специальной эмали и ли фольги. Для защиты от механических повреждений ионизатор помещают в металлический кожух, который одновременно создает нужное направление ионизированного воздуха. В таблице 3 приведены данные по применяемым в радиоизотопных нейтрализаторах радиоактивным веществам.

Данные по радиоактивным веществам радиоизотопных нейтрализаторов (слайд).

Таблица 3

Наиболее эффективны и безопасны радиоактивные вещества с α-частицами. Проникающая способность α-частиц в воздухе до 10см, а в более плотных средах значительно меньше. Например, лист обычной чистой бумаги ее полностью поглощает.

Нейтрализаторы с таким излучением пригодны для локальной ионизации воздуха и нейтрализации зарядов в месте их образования. Для нейтрализации электрических зарядов в аппаратах с большим объемом используют β-излучатели.

Радиоактивное вещество с γ-изучением из-за высокой проникающей способности и опасности для людей в нейтрализаторах не применяются.

Основным недостатком радиоизотопных нейтрализаторов является малый ионизационный ток по сравнению с другими нейтрализаторами.

Для нейтрализации электрических зарядов могут использоваться комбинированные нейтрализаторы, например, радиоактивно-индукционный. Подобные нейтрализаторы выпускаются промышленностью и имеют улучшенные рабочие характеристики. Рабочие характеристики выражают зависимость разряжающего ионизационного тока от величины потенциала заряженного тела.

Дополнительные способы уменьшения опасности от статической электризации (3 мин, слайд № 13).

Опасность статической электризации ЛВЖ и горючих жидкостей может быть значительно снижена или даже устранена уменьшением скорости потока v . Поэтому рекомендуется следующая скорость v диэлектрических жидкостей:

При ρ ≤ 10 5 Ом∙м принимают v ≤ 10 м/с;

При ρ > 10 5 Ом∙м принимают v ≤ 5 м/с.

Для жидкостей с ρ > 10 9 Ом∙м скорость транспортировки и истечения устанавливается отдельно для каждой жидкости. Безопасной для таких жидкостей обычно является скорость движения или истечения 1,2 м/с.

Для транспортировки жидкостей с ρ > 10 11 -10 12 Ом∙м со скоростью v ≥ 1,5 м/с рекомендуется применять релаксаторы (например, горизонтальные участки трубы увеличенного диаметра) непосредственно у входа в приёмный резервуар. Необходимый диаметр Д р ,м этого участка определяется по формуле

Д р =1.4 Д т ∙ . (7)

Длина релаксатора L p определяется по формуле

L p ≥ 2.2 ∙ 10 -11 ξρ, (8)

где ξ – относительная диэлектрическая проницаемость жидкости;

ρ – удельное объемное сопротивление жидкости Ом∙м.

При заполнении резервуара жидкостью с ρ >10 5 Ом∙м до момента затопления загрузочной трубы рекомендуется подавать жидкости со скоростью v ≤ 1 м/с, а затем с указанной скоростью v ≤ 5 м/с.

Иногда требуется увеличивать скорость жидкостей в трубопроводе до 4÷5 м/с.

Диаметр релаксатора, рассчитанный по формуле (7), оказывается в этом случае непомерно большим. Поэтому для увеличения эффективности релаксатора рекомендуется применять их со струнами или иглами. В первом случае внутри релаксатора и вдоль его оси натягиваются заземленные струны что более чем на 50% уменьшает ток электризации а во втором в поток жидкости вводят заземлённые иглы, чтобы отводить заряды от потока жидкости.

Максимально допустимые и безопасные (в отношении возможности воспламенения паров жидкости в промышленном резервуаре) режимы транспортировки нефтепродуктов по длинным трубам диаметром 100÷250 мм могут быть оценены по соотношению

v т 2 Д т ≤ 0.64 , (9)

где v т – линейная скорость жидкости в трубе м/с, Д т – диаметр трубы, м.

При операциях с сыпучими и мелко дисперсными материалами снижение опасности от статической электризации можно достичь следующими мерами: при их пневмотранспортировке использовать трубы из полиэтилена или из того же материала (или близкому по составу к транспортируемому веществу); относительная влажность воздуха на выходе из пневмотранспорта должна быть не менее 65% (если это неприемлемо, то рекомендуется ионизировать воздух или применять инертный газ).

Следует избегать возникновения пылевоздушных горючих смесей, не допускать падение пыли, её всклубления или завихрения. Необходимо очищать оборудование и конструкции здания от осевшей пыли.

При операциях с горючими газами необходимо следить за их чистотой, отсутствием на путях их движения незаземлённых частей оборудования или приборов.

Хороший эффект по условиям пожаро - и взрывобезопасности от искр статического электричества и всех других источников зажигания достигается заменой органических растворителей и ЛВЖ на негорючие если такая замена не нарушает хода технологического процесса и экономически целесообразна.

АНОО «ЦППиПК «Кубанский»»

Электризация нефтепродуктов.

Методическое пособие.

Разработал: преподаватель А.С.Нестерук

г.Краснодар

Электризация нефтепродуктов. Причины возникновения и меры для защиты от статического электричества.

Нефть и нефтепродукты – хорошие диэлектрики и способны сохранять электрические заряды в течении длительного времени. У безводных, чистых нефтепродуктов электропроводность совершенно ничтожна. Это свойство широко используется на практике. Так твердые парафины применяются в электромеханической промышленности в качестве изолятора, а специальные нефтяные масла для заливки трансформаторов, конденсаторов и другой аппаратуры в электро- и радиопромышленности.

Высокие диэлектрические свойства нефтепродуктов способствуют накоплению на их поверхности зарядов статического электричества. Образование статического электричества может произойти от ряда самых разнообразных причин.

Проведенные исследования и подробное изучение фактов возник­новения взрывов и пожаров от статического электричества позво­лили установить ряд причин образования заряда статического электричества в н/п:

Ø трение жидкого н/п о твердую поверхность трубопровода, стенок резервуара и фильтра;

Ø трение частиц н/п между собой, при прохождении топлива через среду других жидкостей, например воды;

Ø прохождение капель мелкораспыленного н/п через воздух или паровоздушную смесь;

Ø осаждение из н/п твердых взвешенных частиц;

Ø осаждение из н/п жидких взвешенных частиц, например капель воды или других химических веществ, а также при прохож­дении сквозь слой жидкого н/п пузырьков воздуха, паров лег­ких углеводородов и т. д.;

Ø прохождение сквозь паровоздушное пространство капель воды, снежинок и т. п.

Опытами установлено, что способность н/п подвергаться электризации при перекачке находится в зависимости от его элек­тропроводности: чем меньше электропроводность н/п, тем легче накапливается заряд статического электричества и тем медленнее он рассеивается. Кроме этого, на скорость образования статического электричества влияют эксплуатационные факторы:



ü скорость пере­качки,

ü присутствие в н/п механических примесей, воды, возду­ха,

ü условия хранения, температура и др.

Чем больше скорость пере­качки, тем сильнее электризуется н/п. Чем дольше перекачивать н/п, тем оно сильнее электризуется. Большое влияние на электризацию н/п оказывают также механические примеси и пузырьки воздуха: чем их больше, тем сильнее электри­зуется н/п. Растворенная или диспергированная в н/п вода значительно увеличивает образование статического электричества. Однако вода, находящаяся на дне емкости в виде отдельного слоя, или не оказывает никакого влияния на скорость образования ста­тического электричества, или способствует уменьшению его.

Если изолированные металлические емкости или трубопроводы примут высокие потенциалы относительно земли, то между ними и заземленными предметами возможен искровой разряд, который может вызвать загорание или взрыв нефтепродуктов и нефтей. Для предупреждения возникновения опасных искровых разрядов с поверхности нефти и нефтепродуктов, оборудования, а также с тела человека необходимо предусматривать меры, уменьшающие величину заряда и обеспечивающие стекание возникающего заряда статистического электричества.

Для снижения интенсивности накапливания электрических зарядов нефтепродукты должны закачиваться в резервуары, цистерны, тару без разбрызгивания, распыления или бурного перемешивания. В резервуары нефтепродукты должны поступать ниже уровня находящегося в нем остатка нефтепродукта. Налив светлых нефтепродуктов свободно падающей струей не допускается. Расстояние от конца загрузочной трубы до конца приемного сосуда не должно превышать 200 мм, а если это невозможно, то струя должна быть направлена вдоль стенки. Скорости движения нефтепродуктов по трубопроводам не должны превышать предельно допустимых значений, которые зависят от вида проводимых операций, свойств нефтепродуктов, содержания и размера нерастворимых примесей и свойств материала стенок трубопровода. Для нефтепродуктов скорости движения и истечения допускаются до 5м/с. При заполнении порожнего резервуара нефтепродукты должны подаваться в него со скоростью не более 1 м/с до момента затопления конца приемно-раздаточного патрубка.

Для обеспечения стекания возникшего электрического заряда все металлические части аппаратуры, насосов и трубопроводных коммуникаций заземляются и осуществляется постоянный электрический контакт тела человека с заземлением. Авто- и ж/д цистерны, находящиеся под наливом и сливом пожароопасных нефтепродуктов, в течение всего времени заполнения и опорожнения должны быть присоединены к заземляющим устройствам.

Статическим электричеством называется совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объёме диэлектрика или на изолированных проводниках.

> ПОТ Р М-021-2002 Межотраслевые правила по охране труда при эксплуатации нефтебаз, складов ГСМ, стационарных и передвижных автозаправочных станций (содержание)

5.4. Борьба с проявлением статического электричества

5.4.1. Защита зданий и сооружений нефтебаз, складов ГСМ, АЗС, ПАЗС от статического электричества должна производиться в соответствии с требованиями действующих государственных стандартов.
5.4.2. Сопротивление заземляющего устройства, предназначенного исключительно для защиты от статического электричества, должно быть не выше 100 Ом.
5.4.3. Все металлические и электропроводимые неметаллические части оборудования резервуаров должны быть заземлены независимо от того, применяются ли другие меры защиты от статического электричества.
5.4.4. Лакокрасочное покрытие, нанесенное на заземленное металлическое оборудование, внутренние и наружные стенки резервуаров, считается электростатическим заземлением, если сопротивление наружной поверхности покрытия относительно заземленного оборудования не превышает 10 Ом.
5.4.5. Резервуары вместимостью более 50 м3 (за исключением вертикальных диаметром до 2,5 м) должны быть присоединены к заземлителям с помощью не менее двух проводников в диаметрально противоположных точках.
5.4.6. Производительность наполнения и опорожнения резервуара не должна превышать суммарной пропускной способности установленных на резервуаре дыхательных, предохранительных клапанов и вентиляционных устройств.
Наполнение резервуара должно производиться без разбрызгивания и бурного перемешивания жидкости.
5.4.7. Максимальные скорости движения нефтепродуктов для обеспечения безопасности от электризации должны определяться в соответствии с требованиями действующих государственных стандартов, Правилами защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности для предотвращения опасной электризации нефтепродуктов при наливе в вертикальные и горизонтальные резервуары, автомобильные и железнодорожные цистерны в зависимости от вида нефтепродукта, материала и диаметра трубопровода, размеров резервуара и других показателей.
5.4.8. Для защиты от статического электричества необходимо заземлять металлическое оборудование, резервуары, нефтепродуктопроводы, сливоналивные устройства, предназначенные для транспортирования, хранения и отпуска легковоспламеняющихся и горючих жидкостей. Система заземления должна представлять на всем протяжении непрерывную электрическую цепь.
5.4.9. Во избежание опасности искровых разрядов наличие на поверхности нефтепродуктов незаземленных электропроводных плавающих предметов не допускается.
На применяемых поплавковых или буйковых уровнемерах поплавки и буйки должны быть изготовлены из электропроводного материала и надежно заземлены.
При эксплуатации резервуаров с металлическими или изготовленными из синтетических материалов понтонами электропроводящие элементы понтонов должны быть надежно заземлены.
5.4.10. Для отвода зарядов статического электричества нижняя поверхность понтона из пенополиуретана и его затвор покрываются электропроводным латексом или другими аналогичными покрытиями.
Измерение сопротивления производится после полимеризации и затвердевания латекса (около суток) в любой точке понтона по отношению к стенке резервуара.
5.4.11. Автоцистерны, а также наливные суда во время операций слива - налива легковоспламеняющихся и горючих нефтепродуктов должны присоединяться к заземлителям с помощью устройства автоматического контроля заземления с искробезопасным контактным устройством или непосредственно к заземляющему устройству.
В качестве заземляющего устройства необходимо применять гибкий (многожильный) медный провод сечением не менее 6 мм2. Наконечник заземляющего устройства должен быть изготовлен из металла, не дающего искр при ударе.
5.4.12. Отсоединять и присоединять кабели заземления во время наливных операций запрещается.
5.4.13. Рельсы железнодорожных путей в пределах наливного фронта должны быть электрически соединены с проходящими трубопроводами через каждые 200 - 300 м и иметь надежное заземление в обоих концах.
5.4.14. Осмотр и текущий ремонт заземляющих устройств необходимо проводить одновременно с осмотром и текущим ремонтом технологического оборудования, электрооборудования и электропроводки.
5.4.15. Монтаж контактных соединений технологического оборудования и присоединение к ним сетей заземления и зануления выполняется в соответствии с рабочими чертежами.
Места расположения контактных соединений и ответвлений от них должны быть доступны для осмотра.
5.4.16. Переходное электрическое сопротивление в контактных соединениях технологического оборудования должно быть не более 0,03 Ом на один контакт.
Переходное сопротивление контактных соединений следует измерять приборами во взрывозащищенном исполнении.
5.4.17. Работники, проводящие ревизию молниезащитных устройств, должны составлять акт осмотра и проверки с указанием обнаруженных повреждений или неисправностей.
Результаты ревизии молниезащитных устройств, проверочных испытаний заземляющих устройств, выполненного ремонта следует заносить в специальный журнал.
5.4.20. Ответственность за состояние устройств защиты от статического электричества и молниезащиты несет служба главного энергетика. Ответственные работники обязаны обеспечить эксплуатацию и ремонт устройств защиты от статического электричества и молниезащиты в соответствии с действующими нормативными документами.

При соприкосновении двух тел, отличающихся фазовым состоянием, образуется двойной электрический слой.

Различают три причины образования двойного электрического слоя:
1) преимущественное перемещение носителей зарядов из одного тела в другое — диффузия;
2) на границе раздела имеют место абсорбционные процессы, когда заряды одной из фаз преимущественно оседают на поверхности другой фазы;
3) имеет место поляризация молекул хотя бы одной из фаз. Это приводит к поляризации молекул другой фазы. Причем поляризация во второй фазе может быть размытой (диффузной).

Двойной электрический слой зависит от удельного сопротивления вещества. Чем больше сопротивление вещества, тем более размытым в глубину является второй электрический слой.

Если рассматривать перекачку нефти, то размытый второй электрический слой может уноситься перемещением нефти и накапливаться в бункере. Чем больше скорость перемещения нефти, тем больше электризация нефти.

Величина зарядов статического электричества существенно зависит от условий, в которых происходит электризация и, в частности, от того, что поверхности соприкасающихся тел могут быть «загрязнены» другими веществами. Поэтому основой количественного анализа является эксперимент или, в лучшем случае, расчетно-экспериментальные исследования.

Технологический процесс транспортировки нефти

Статическая зарядка топлив стала резко проявляться примерно с 60-х — 70-х годов, когда начало применяться чистое топливо для улучшения экономичности работы и ресурса двигателей. На рис.1 показана технологическая цепочка транспортировки нефти.

Рис.1. Нарастание плотности заряда в нефти при прохождении по тракту

Нарастание плотности заряда в нефти происходит в технологических устройствах, где осуществляется контакт нефти с материалами, приводящим к ее зарядке, и где увеличивается скорость течения нефти. Спад заряда наблюдается при движении нефти по заземленным трубопроводам.

При движении нефти по технологическому тракту вплоть до приемного резервуара опасности от накопления заряда статического электричества практически нет, так как воздушных промежутков в аппаратах здесь нет и нет возможности возникновения электрического пробоя в газе. Иная ситуация существует в приемном резервуаре, где обязательно наличие газового пространства над поверхностью нефти.

Заряд, накапливаемый в приемном резервуаре, можно определить из условия его увеличения за счет втекания в резервуар заряженной нефти с учетом релаксации (стекания) заряда на заземленные конструкции резервуара:

dQ/dt | общ = dQ/dt | вх + dQ/dt | релакс

Здесь релаксация заряда происходит по экспоненциальной зависимости:
Q(t) = Q 0 e -t/τ
где τ = εε 0 /γ v — постоянная времени релаксации, а ε и γ — соответственно относительная диэлектрическая проницаемость и проводимость нефти.

dQ/dt | релакс = — Q 0 /τ ⋅ e -t/τ = -Q/τ

Перепишем исходное уравнение, учитывая, что dQ/dt | вх = I вх, где I вх — ток зарядов статического электричества на входе в резервуар.

dQ/dt | общ = I вх — Q/τ

Решением дифференциального уравнения является:

Q = I вх τ(1 — e -t/τ)

На рис. 2 приведены зависимости изменения плотности и суммарного объемного заряда нефти в приемном резервуаре.


Рис.2. Зависимость суммарного объемного заряда нефти в приемном резервуаре от времени наполнения

Из зависимостей видно, что скорость роста заряда экспоненциально падает, а суммарный объемный заряд, увеличиваясь, экспоненциально стремится к предельному значению, определяемому произведением I вх τ.

Поэтому для уменьшения заряда, накапливаемого в приемном резервуаре, есть два пути. Первый заключается в снижении постоянной времени релаксации путем добавления в нефть специальных присадок, увеличивающих ее проводимость. Данное направление выбрала голландская фирма «Shell». Недостатком метода является непрерывный контроль за количеством присадки в нефти и точная его дозировка, так как при очистке нефти фильтрами одновременно происходит удаление присадки.

Второй путь заключается в непосредственном уменьшении заряда, находящегося в приемном резервуаре. С этой целью используют специальные устройства, называемые нейтрализаторами статического электричества. Схема нейтрализатора статического электричества приведена на рис. 3.


Рис.3. Нейтрализатор статического электричества

Вокруг электродов, имеющих форму игл, в результате процессов ионизации образуются области с повышенным содержанием ионов, имеющих заряд противоположного знака избыточному заряду нефти (в нашем случае положительных ионов). В результате рекомбинации отрицательных и положительных ионов избыточный заряд нефти уменьшается.

Для решения задачи по предотвращению возгорания паров нефти из-за разрядов статического электричества необходимо определить величину и распределение зарядов в приемном резервуаре в зависимости от параметров системы транспортировки, рассчитать распределение поля и определить возможность возникновения разрядов и воспламенения паров в зависимости от минимальной энергии, необходимой для воспламенения. Если вероятность воспламенения велика, то должны использоваться нейтрализаторы или вводиться ограничения на режимы перекачки (например, ограничения скорости перекачки). Опасность возникновения разрядов статического электричества зависит от размера и формы используемых резервуаров (рис.4).


Рис.4. Виды резервуаров
а) прямоугольный; б) горизонтальный цилиндрический; в) вертикальный
цилиндрический; г) вертикальный цилиндрический с центральной стойкой

Воспламенение паров нефти

Заряд нефти, поступающей в резервуар, распределен по объему неравномерно. Это связано с релаксацией заряда на заземленные стенки конструкции. Поэтому, чем дальше рассматриваемый объем нефти от стенки резервуара, тем больше заряд в объеме. Кроме того, на поверхности нефти заряд релаксирует медленнее (особенно при приближении уровня к верхней стенке резервуара) в связи с влиянием большой величины емкости между поверхностью нефти и верхней стенкой.

Это означает, что на поверхности нефти в наиболее удаленной точке от стенок резервуара накапливается большой заряд, который создает электрическое поле между этой точкой поверхности нефти и заземленными стенками резервуара. По мере накопления заряда растет напряженность электрического поля вплоть до значения равного величине, при которой начинается разряд. В развивающемся разряде выделяется энергия, накопленная в нефти. Для того, чтобы пары нефти воспламенились, необходима определенная энергия равная минимальной энергии воспламенения. Для разных веществ она различается:

Минимальная энергия воспламенения паро-воздушных
и кислородных (в скобках) смесей (мДж)

Энергия, выделяющаяся при прибое газового промежутка, определяется по формуле:

где соответственно U — напряжение на промежутке и i — ток, протекающий через промежуток.

Микроразряды статического электричества не приводят к сколь-нибудь заметному изменению напряжения из-за очень малой длительности самих разрядов и их малой энергии. Тогда приближенно можно считать, что U ≈ const. Следовательно

т.е. энергия пропорциональна величине заряда, протекающего через канал.

На рис. 5 показаны зависимости величины зарядов, приводящих к воспламенению паров нефтепродуктов, от диаметра заземленного шара при положительном и отрицательном зарядах статического электричества.


Рис.5. Воспламеняющие способности разрядов в зависимости
от диаметра заземленного шара

Воспламеняющую способность разрядов статического электричества обычно определяют, помещая заземленный сферический электрод вблизи поверхности жидкости. Видно, что воспламеняющая способность разрядов резко снижается, если диаметр сферы становится меньше 20 мм. Наименьшее значение воспламеняющего заряда соответствует электроду диаметром 20-30 мм. При отрицательной полярности заряда нефти и нефтепродукта энергия воспламенения ниже, чем при положительной. В табл. 1 представлены параметры групп топлив по воспламеняемости.
Таблица 1. Группы топлив по уровню воспламеняемости


Рис.6.Зависимость допустимой скорости перекачивания нефтепродуктов от накапливаемого удельного заряда и проводимости нефтепродуктов

Исследования показали, что процесс заполнения резервуара является безопасным, если потенциал на поверхности жидкости не больше 25 кВ для «-» заряженного топлива и не больше 54 кВ — для «+» заряженного топлива.

Исходя из режимов работы перекачивающих нефтепродукты систем и условий их безопасной работы, определяется допустимая производительность при накоплении определенного заряда в нефтепродуктах (рис. 6).